Communication Engineering
Tuesday, 16 December 2014
Tuesday, 1 July 2014
TRANSISTOR
A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. It is composed of semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. Following its development in 1947 by John Bardeen, Walter Brattain, and William Shockley, the transistor revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The transistor is on the list of IEEE milestones in electronics, and the inventors were jointly awarded the 1956 Nobel Prize in Physics for their achievement.
Contents
History
Main article: History of the transistor
The thermionic triode, a vacuum tube invented in 1907, propelled the electronics age forward, enabling amplified radio technology and long-distance telephony. The triode, however, was a fragile device that consumed a lot of power. Physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor (FET) in Canada in 1925, which was intended to be a solid-state replacement for the triode.[1][2] Lilienfeld also filed identical patents in the United States in 1926[3] and 1928.[4][5]
However, Lilienfeld did not publish any research articles about his
devices nor did his patents cite any specific examples of a working
prototype. Because the production of high-quality semiconductor
materials was still decades away, Lilienfeld's solid-state amplifier
ideas would not have found practical use in the 1920s and 1930s, even if
such a device had been built.[6] In 1934, German inventor Oskar Heil patented a similar device.[7]From November 17, 1947 to December 23, 1947, John Bardeen and Walter Brattain at AT&T's Bell Labs in the United States, performed experiments and observed that when two gold point contacts were applied to a crystal of germanium, a signal was produced with the output power greater than the input.[8] Solid State Physics Group leader William Shockley saw the potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors. The term transistor was coined by John R. Pierce as a portmanteau of the term "transfer resistor".[9][10] According to Lillian Hoddeson and Vicki Daitch, authors of a biography of John Bardeen, Shockley had proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld’s patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because the idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor.[6] In acknowledgement of this accomplishment, Shockley, Bardeen, and Brattain were jointly awarded the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect."[11]
In 1948, the point-contact transistor was independently invented by German physicists Herbert Mataré and Heinrich Welker while working at the Compagnie des Freins et Signaux, a Westinghouse subsidiary located in Paris. Mataré had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort during World War II. Using this knowledge, he began researching the phenomenon of "interference" in 1947. By witnessing currents flowing through point-contacts, similar to what Bardeen and Brattain had accomplished earlier in December 1947, Mataré by June 1948, was able to produce consistent results by using samples of germanium produced by Welker. Realizing that Bell Labs' scientists had already invented the transistor before them, the company rushed to get its "transistron" into production for amplified use in France's telephone network.[12]
The first high-frequency transistor was the surface-barrier germanium transistor developed by Philco in 1953, capable of operating up to 60 MHz.[13] These were made by etching depressions into an N-type germanium base from both sides with jets of Indium(III) sulfate until it was a few ten-thousandths of an inch thick. Indium electroplated into the depressions formed the collector and emitter.[14][15] The first all-transistor car radio, which was produced in 1955 by Chrysler and Philco, used these transistors in its circuitry and also they were the first suitable for high-speed computers.[16][17][18][19]
The first working silicon transistor was developed at Bell Labs on January 26, 1954 by Morris Tanenbaum.[20] The first commercial silicon transistor was produced by Texas Instruments in 1954.[21] This was the work of Gordon Teal, an expert in growing crystals of high purity, who had previously worked at Bell Labs.[22] The first MOS transistor actually built was by Kahng and Atalla at Bell Labs in 1960.[23]
Importance
The transistor is the key active component in practically all modern electronics. Many consider it to be one of the greatest inventions of the 20th century.[24] Its importance in today's society rests on its ability to be mass-produced using a highly automated process (semiconductor device fabrication) that achieves astonishingly low per-transistor costs. The invention of the first transistor at Bell Labs was named an IEEE Milestone in 2009.[25]Although several companies each produce over a billion individually packaged (known as discrete) transistors every year,[26] the vast majority of transistors are now produced in integrated circuits (often shortened to IC, microchips or simply chips), along with diodes, resistors, capacitors and other electronic components, to produce complete electronic circuits. A logic gate consists of up to about twenty transistors whereas an advanced microprocessor, as of 2009, can use as many as 3 billion transistors (MOSFETs).[27] "About 60 million transistors were built in 2002 ... for [each] man, woman, and child on Earth."[28]
The transistor's low cost, flexibility, and reliability have made it a ubiquitous device. Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery. It is often easier and cheaper to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical control function.
Simplified operation
This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2010) |
There are two types of transistors, which have slight differences in how they are used in a circuit. A bipolar transistor has terminals labeled base, collector, and emitter. A small current at the base terminal (that is, flowing between the base and the emitter) can control or switch a much larger current between the collector and emitter terminals. For a field-effect transistor, the terminals are labeled gate, source, and drain, and a voltage at the gate can control a current between source and drain.
The image to the right represents a typical bipolar transistor in a circuit. Charge will flow between emitter and collector terminals depending on the current in the base. Because internally the base and emitter connections behave like a semiconductor diode, a voltage drop develops between base and emitter while the base current exists. The amount of this voltage depends on the material the transistor is made from, and is referred to as VBE.
Transistor as a switch
Transistors are commonly used as electronic switches, both for high-power applications such as switched-mode power supplies and for low-power applications such as logic gates.In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises, the emitter and collector currents rise exponentially. The collector voltage drops because of reduced resistance from collector to emitter. If the voltage difference between the collector and emitter were zero (or near zero), the collector current would be limited only by the load resistance (light bulb) and the supply voltage. This is called saturation because current is flowing from collector to emitter freely. When saturated, the switch is said to be on.[29]
Providing sufficient base drive current is a key problem in the use of bipolar transistors as switches. The transistor provides current gain, allowing a relatively large current in the collector to be switched by a much smaller current into the base terminal. The ratio of these currents varies depending on the type of transistor, and even for a particular type, varies depending on the collector current. In the example light-switch circuit shown, the resistor is chosen to provide enough base current to ensure the transistor will be saturated.
In any switching circuit, values of input voltage would be chosen such that the output is either completely off,[30] or completely on. The transistor is acting as a switch, and this type of operation is common in digital circuits where only "on" and "off" values are relevant.
Transistor as an amplifier
The common-emitter amplifier is designed so that a small change in voltage (Vin) changes the small current through the base of the transistor; the transistor's current amplification combined with the properties of the circuit mean that small swings in Vin produce large changes in Vout.Various configurations of single transistor amplifier are possible, with some providing current gain, some voltage gain, and some both.
From mobile phones to televisions, vast numbers of products include amplifiers for sound reproduction, radio transmission, and signal processing. The first discrete-transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.
Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive.
Comparison with vacuum tubes
Prior to the development of transistors, vacuum (electron) tubes (or in the UK "thermionic valves" or just "valves") were the main active components in electronic equipment.Advantages
The key advantages that have allowed transistors to replace their vacuum tube predecessors in most applications are- No power consumption by a cathode heater; the characteristic orange glow of vacuum tubes is due to a simple electrical heating element, much like a light bulb filament.
- Small size and minimal weight, allowing the development of miniaturized electronic devices.
- Low operating voltages compatible with batteries of only a few cells.
- No warm-up period for cathode heaters required after power application.
- Lower power dissipation and generally greater energy efficiency.
- Higher reliability and greater physical ruggedness.
- Extremely long life. Some transistorized devices have been in service for more than 50 years.
- Complementary devices available, facilitating the design of complementary-symmetry circuits, something not possible with vacuum tubes.
- Greatly reduced sensitivity to mechanical shock and vibration, thus reducing the problem of microphonics in sensitive applications, such as audio.
Limitations
- Silicon transistors can age and fail.[31]
- High-power, high-frequency operation, such as that used in over-the-air television broadcasting, is better achieved in vacuum tubes due to improved electron mobility in a vacuum.
- Solid-state devices are more vulnerable to electrostatic discharge in handling and operation
- A vacuum tube momentarily overloaded will just get a little hotter; solid-state devices have less mass to absorb the heat due to overloads, in proportion to their rating
- Sensitivity to radiation and cosmic rays (special radiation-hardened chips are used for spacecraft devices).
- Vacuum tubes create a distortion, the so-called tube sound, that some people find to be more tolerable to the ear.[32]
Types
Transistors are categorized by- Semiconductor material (date first used): the metalloids germanium (1947) and silicon (1954)— in amorphous, polycrystalline and monocrystalline form; the compounds gallium arsenide (1966) and silicon carbide (1997), the alloy silicon-germanium (1989), the allotrope of carbon graphene (research ongoing since 2004), etc.—see Semiconductor material
- Structure: BJT, JFET, IGFET (MOSFET), insulated-gate bipolar transistor, "other types"
- Electrical polarity (positive and negative): n–p–n, p–n–p (BJTs); n-channel, p-channel (FETs)
- Maximum power rating: low, medium, high
- Maximum operating frequency: low, medium, high, radio (RF), microwave frequency (the maximum effective frequency of a transistor is denoted by the term , an abbreviation for transition frequency—the frequency of transition is the frequency at which the transistor yields unity gain)
- Application: switch, general purpose, audio, high voltage, super-beta, matched pair
- Physical packaging: through-hole metal, through-hole plastic, surface mount, ball grid array, power modules—see Packaging
- Amplification factor hfe, βF (transistor beta)[33] or gm (transconductance).
Bipolar junction transistor (BJT)
Main article: Bipolar junction transistor
Bipolar transistors are so named because they conduct by using both majority and minority carriers.
The bipolar junction transistor, the first type of transistor to be
mass-produced, is a combination of two junction diodes, and is formed of
either a thin layer of p-type semiconductor sandwiched between two
n-type semiconductors (an n–p–n transistor), or a thin layer of n-type
semiconductor sandwiched between two p-type semiconductors (a p–n–p
transistor). This construction produces two p–n junctions:
a base–emitter junction and a base–collector junction, separated by a
thin region of semiconductor known as the base region (two junction
diodes wired together without sharing an intervening semiconducting
region will not make a transistor).BJTs have three terminals, corresponding to the three layers of semiconductor—an emitter, a base, and a collector. They are useful in amplifiers because the currents at the emitter and collector are controllable by a relatively small base current."[34] In an n–p–n transistor operating in the active region, the emitter–base junction is forward biased (electrons and holes recombine at the junction), and electrons are injected into the base region. Because the base is narrow, most of these electrons will diffuse into the reverse-biased (electrons and holes are formed at, and move away from the junction) base–collector junction and be swept into the collector; perhaps one-hundredth of the electrons will recombine in the base, which is the dominant mechanism in the base current. By controlling the number of electrons that can leave the base, the number of electrons entering the collector can be controlled.[34] Collector current is approximately β (common-emitter current gain) times the base current. It is typically greater than 100 for small-signal transistors but can be smaller in transistors designed for high-power applications.
Unlike the field-effect transistor (see below), the BJT is a low–input-impedance device. Also, as the base–emitter voltage (Vbe) is increased the base–emitter current and hence the collector–emitter current (Ice) increase exponentially according to the Shockley diode model and the Ebers-Moll model. Because of this exponential relationship, the BJT has a higher transconductance than the FET.
Bipolar transistors can be made to conduct by exposure to light, because absorption of photons in the base region generates a photocurrent that acts as a base current; the collector current is approximately β times the photocurrent. Devices designed for this purpose have a transparent window in the package and are called phototransistors.
Field-effect transistor (FET)
The field-effect transistor, sometimes called a unipolar transistor, uses either electrons (in n-channel FET) or holes (in p-channel FET) for conduction. The four terminals of the FET are named source, gate, drain, and body (substrate). On most FETs, the body is connected to the source inside the package, and this will be assumed for the following description.In a FET, the drain-to-source current flows via a conducting channel that connects the source region to the drain region. The conductivity is varied by the electric field that is produced when a voltage is applied between the gate and source terminals; hence the current flowing between the drain and source is controlled by the voltage applied between the gate and source. As the gate–source voltage (Vgs) is increased, the drain–source current (Ids) increases exponentially for Vgs below threshold, and then at a roughly quadratic rate () (where VT is the threshold voltage at which drain current begins)[35] in the "space-charge-limited" region above threshold. A quadratic behavior is not observed in modern devices, for example, at the 65 nm technology node.[36]
For low noise at narrow bandwidth the higher input resistance of the FET is advantageous.
FETs are divided into two families: junction FET (JFET) and insulated gate FET (IGFET). The IGFET is more commonly known as a metal–oxide–semiconductor FET (MOSFET), reflecting its original construction from layers of metal (the gate), oxide (the insulation), and semiconductor. Unlike IGFETs, the JFET gate forms a p–n diode with the channel which lies between the source and drain. Functionally, this makes the n-channel JFET the solid-state equivalent of the vacuum tube triode which, similarly, forms a diode between its grid and cathode. Also, both devices operate in the depletion mode, they both have a high input impedance, and they both conduct current under the control of an input voltage.
Metal–semiconductor FETs (MESFETs) are JFETs in which the reverse biased p–n junction is replaced by a metal–semiconductor junction. These, and the HEMTs (high-electron-mobility transistors, or HFETs), in which a two-dimensional electron gas with very high carrier mobility is used for charge transport, are especially suitable for use at very high frequencies (microwave frequencies; several GHz).
FETs are further divided into depletion-mode and enhancement-mode types, depending on whether the channel is turned on or off with zero gate-to-source voltage. For enhancement mode, the channel is off at zero bias, and a gate potential can "enhance" the conduction. For the depletion mode, the channel is on at zero bias, and a gate potential (of the opposite polarity) can "deplete" the channel, reducing conduction. For either mode, a more positive gate voltage corresponds to a higher current for n-channel devices and a lower current for p-channel devices. Nearly all JFETs are depletion-mode because the diode junctions would forward bias and conduct if they were enhancement-mode devices; most IGFETs are enhancement-mode types.
Usage of bipolar and field-effect transistors
The bipolar junction transistor (BJT) was the most commonly used transistor in the 1960s and 70s. Even after MOSFETs became widely available, the BJT remained the transistor of choice for many analog circuits such as amplifiers because of their greater linearity and ease of manufacture. In integrated circuits, the desirable properties of MOSFETs allowed them to capture nearly all market share for digital circuits. Discrete MOSFETs can be applied in transistor applications, including analog circuits, voltage regulators, amplifiers, power transmitters and motor drivers.Other transistor types
This article contains embedded lists that may be poorly defined, unverified or indiscriminate. Please help to clean it up to meet Wikipedia's quality standards. Where appropriate, incorporate items into the main body of the article. (September 2009) |
For early bipolar transistors, see Bipolar junction transistor#Bipolar transistors.
- Bipolar junction transistor
- Heterojunction bipolar transistor, up to several hundred GHz, common in modern ultrafast and RF circuits
- Schottky transistor
- Avalanche transistor
- Darlington transistors are two BJTs connected together to provide a high current gain equal to the product of the current gains of the two transistors.
- Insulated-gate bipolar transistors (IGBTs) use a medium-power IGFET, similarly connected to a power BJT, to give a high input impedance. Power diodes are often connected between certain terminals depending on specific use. IGBTs are particularly suitable for heavy-duty industrial applications. The Asea Brown Boveri (ABB) 5SNA2400E170100 illustrates just how far power semiconductor technology has advanced.[37] Intended for three-phase power supplies, this device houses three n–p–n IGBTs in a case measuring 38 by 140 by 190 mm and weighing 1.5 kg. Each IGBT is rated at 1,700 volts and can handle 2,400 amperes.
- Photo transistor
- Multiple-emitter transistor, used in transistor–transistor logic
- Multiple-base transistor, used to amplify very-low-level signals in noisy environments such as the pickup of a record player or radio front ends. Effectively, it is a very large number of transistors in parallel where, at the output, the signal is added constructively, but random noise is added only stochastically.[38]
- Field-effect transistor
- Carbon nanotube field-effect transistor (CNFET)
- JFET, where the gate is insulated by a reverse-biased p–n junction
- MESFET, similar to JFET with a Schottky junction instead of a p–n junction
- High-electron-mobility transistor (HEMT, HFET, MODFET)
- MOSFET, where the gate is insulated by a shallow layer of insulator
- Inverted-T field-effect transistor (ITFET)
- FinFET, source/drain region shapes fins on the silicon surface.
- FREDFET, fast-reverse epitaxial diode field-effect transistor
- Thin-film transistor, in LCDs.
- Organic field-effect transistor (OFET), in which the semiconductor is an organic compound
- Ballistic transistor
- Floating-gate transistor, for non-volatile storage.
- FETs used to sense environment
- Ion-sensitive field effect transistor (IFSET), to measure ion concentrations in solution.
- EOSFET, electrolyte-oxide-semiconductor field-effect transistor (Neurochip)
- DNAFET, deoxyribonucleic acid field-effect transistor
- Diffusion transistor, formed by diffusing dopants into semiconductor substrate; can be both BJT and FET
- Unijunction transistors can be used as simple pulse generators. They comprise a main body of either P-type or N-type semiconductor with ohmic contacts at each end (terminals Base1 and Base2). A junction with the opposite semiconductor type is formed at a point along the length of the body for the third terminal (Emitter).
- Single-electron transistors (SET) consist of a gate island between two tunneling junctions. The tunneling current is controlled by a voltage applied to the gate through a capacitor.[39]
- Nanofluidic transistor, controls the movement of ions through sub-microscopic, water-filled channels.[40]
- Multigate devices
- Tetrode transistor
- Pentode transistor
- Trigate transistors (Prototype by Intel)
- Dual-gate FETs have a single channel with two gates in cascode; a configuration optimized for high-frequency amplifiers, mixers, and oscillators.
- Junctionless nanowire transistor (JNT), developed at Tyndall National Institute in Ireland, was the first transistor successfully fabricated without junctions. (Even MOSFETs have junctions, although its gate is electrically insulated from the region the gate controls.) Junctions are difficult and expensive to fabricate, and, because they are a significant source of current leakage, they waste significant power and generate significant waste heat. Eliminating them held the promise of cheaper and denser microchips. The JNT uses a simple nanowire of silicon surrounded by an electrically isolated "wedding ring" that acts to gate the flow of electrons through the wire. This method has been described as akin to squeezing a garden hose to gate the flow of water through the hose. The nanowire is heavily n-doped, making it an excellent conductor. Crucially the gate, comprising silicon, is heavily p-doped; and its presence depletes the underlying silicon nanowire thereby preventing carrier flow past the gate.
- Vacuum-channel transistor: In 2012, NASA and the National Nanofab Center in South Korea were reported to have built a prototype vacuum-channel transistor in only 150 nanometers in size, can be manufactured cheaply using standard silicon semiconductor processing, can operate at high speeds even in hostile environments, and could consume just as much power as a standard transistor.[41]
Part numbering standards / specifications
The types of some transistors can be parsed from the part number. There are three major semiconductor naming standards; in each the alphanumeric prefix provides clues to type of the device.Japanese Industrial Standard (JIS)
Prefix | Type of transistor |
---|---|
2SA | high-frequency p–n–p BJTs |
2SB | audio-frequency p–n–p BJTs |
2SC | high-frequency n–p–n BJTs |
2SD | audio-frequency n–p–n BJTs |
2SJ | P-channel FETs (both JFETs and MOSFETs) |
2SK | N-channel FETs (both JFETs and MOSFETs) |
European Electronic Component Manufacturers Association (EECA)
The Pro Electron standard, the European Electronic Component Manufacturers Association part numbering scheme, begins with two letters: the first gives the semiconductor type (A for germanium, B for silicon, and C for materials like GaAs); the second letter denotes the intended use (A for diode, C for general-purpose transistor, etc.). A 3-digit sequence number (or one letter then 2 digits, for industrial types) follows. With early devices this indicated the case type. Suffixes may be used, with a letter (e.g. "C" often means high hFE, such as in: BC549C[43]) or other codes may follow to show gain (e.g. BC327-25) or voltage rating (e.g. BUK854-800A[44]). The more common prefixes are:Prefix class | Type and usage | Example | Equivalent | Reference |
---|---|---|---|---|
AC | Germanium small-signal AF transistor | AC126 | NTE102A | Datasheet |
AD | Germanium AF power transistor | AD133 | NTE179 | Datasheet |
AF | Germanium small-signal RF transistor | AF117 | NTE160 | Datasheet |
AL | Germanium RF power transistor | ALZ10 | NTE100 | Datasheet |
AS | Germanium switching transistor | ASY28 | NTE101 | Datasheet |
AU | Germanium power switching transistor | AU103 | NTE127 | Datasheet |
BC | Silicon, small-signal transistor ("general purpose") | BC548 | 2N3904 | Datasheet |
BD | Silicon, power transistor | BD139 | NTE375 | Datasheet |
BF | Silicon, RF (high frequency) BJT or FET | BF245 | NTE133 | Datasheet |
BS | Silicon, switching transistor (BJT or MOSFET) | BS170 | 2N7000 | Datasheet |
BL | Silicon, high frequency, high power (for transmitters) | BLW60 | NTE325 | Datasheet |
BU | Silicon, high voltage (for CRT horizontal deflection circuits) | BU2520A | NTE2354 | Datasheet |
CF | Gallium Arsenide small-signal Microwave transistor (MESFET) | CF739 | — | Datasheet |
CL | Gallium Arsenide Microwave power transistor (FET) | CLY10 | — | Datasheet |
Joint Electron Devices Engineering Council (JEDEC)
The JEDEC EIA370 transistor device numbers usually start with "2N", indicating a three-terminal device (dual-gate field-effect transistors are four-terminal devices, so begin with 3N), then a 2, 3 or 4-digit sequential number with no significance as to device properties (although early devices with low numbers tend to be germanium). For example 2N3055 is a silicon n–p–n power transistor, 2N1301 is a p–n–p germanium switching transistor. A letter suffix (such as "A") is sometimes used to indicate a newer variant, but rarely gain groupings.Proprietary
Manufacturers of devices may have their own proprietary numbering system, for example CK722. Since devices are second-sourced, a manufacturer's prefix (like "MPF" in MPF102, which originally would denote a Motorola FET) now is an unreliable indicator of who made the device. Some proprietary naming schemes adopt parts of other naming schemes, for example a PN2222A is a (possibly Fairchild Semiconductor) 2N2222A in a plastic case (but a PN108 is a plastic version of a BC108, not a 2N108, while the PN100 is unrelated to other xx100 devices).Military part numbers sometimes are assigned their own codes, such as the British Military CV Naming System.
Manufacturers buying large numbers of similar parts may have them supplied with "house numbers", identifying a particular purchasing specification and not necessarily a device with a standardized registered number. For example, an HP part 1854,0053 is a (JEDEC) 2N2218 transistor[45][46] which is also assigned the CV number: CV7763[47]
Naming problems
With so many independent naming schemes, and the abbreviation of part numbers when printed on the devices, ambiguity sometimes occurs. For example two different devices may be marked "J176" (one the J176 low-power Junction FET, the other the higher-powered MOSFET 2SJ176).As older "through-hole" transistors are given surface-mount packaged counterparts, they tend to be assigned many different part numbers because manufacturers have their own systems to cope with the variety in pinout arrangements and options for dual or matched n–p–n+p–n–p devices in one pack. So even when the original device (such as a 2N3904) may have been assigned by a standards authority, and well known by engineers over the years, the new versions are far from standardized in their naming.
Construction
Semiconductor material
Semiconductor material |
Junction forward voltage V @ 25 °C |
Electron mobility m2/(V·s) @ 25 °C |
Hole mobility m2/(V·s) @ 25 °C |
Max. junction temp. °C |
---|---|---|---|---|
Ge | 0.27 | 0.39 | 0.19 | 70 to 100 |
Si | 0.71 | 0.14 | 0.05 | 150 to 200 |
GaAs | 1.03 | 0.85 | 0.05 | 150 to 200 |
Al-Si junction | 0.3 | — | — | 150 to 200 |
Rough parameters for the most common semiconductor materials used to make transistors are given in the table to the right; these parameters will vary with increase in temperature, electric field, impurity level, strain, and sundry other factors.
The junction forward voltage is the voltage applied to the emitter–base junction of a BJT in order to make the base conduct a specified current. The current increases exponentially as the junction forward voltage is increased. The values given in the table are typical for a current of 1 mA (the same values apply to semiconductor diodes). The lower the junction forward voltage the better, as this means that less power is required to "drive" the transistor. The junction forward voltage for a given current decreases with increase in temperature. For a typical silicon junction the change is −2.1 mV/°C.[48] In some circuits special compensating elements (sensistors) must be used to compensate for such changes.
The density of mobile carriers in the channel of a MOSFET is a function of the electric field forming the channel and of various other phenomena such as the impurity level in the channel. Some impurities, called dopants, are introduced deliberately in making a MOSFET, to control the MOSFET electrical behavior.
The electron mobility and hole mobility columns show the average speed that electrons and holes diffuse through the semiconductor material with an electric field of 1 volt per meter applied across the material. In general, the higher the electron mobility the faster the transistor can operate. The table indicates that Ge is a better material than Si in this respect. However, Ge has four major shortcomings compared to silicon and gallium arsenide:
- Its maximum temperature is limited;
- it has relatively high leakage current;
- it cannot withstand high voltages;
- it is less suitable for fabricating integrated circuits.
Max. junction temperature values represent a cross section taken from various manufacturers' data sheets. This temperature should not be exceeded or the transistor may be damaged.
Al–Si junction refers to the high-speed (aluminum–silicon) metal–semiconductor barrier diode, commonly known as a Schottky diode. This is included in the table because some silicon power IGFETs have a parasitic reverse Schottky diode formed between the source and drain as part of the fabrication process. This diode can be a nuisance, but sometimes it is used in the circuit.
Packaging
See also: Semiconductor package and Chip carrier
Discrete transistors are individually packaged transistors. Transistors come in many different semiconductor packages (see image). The two main categories are through-hole (or leaded), and surface-mount, also known as surface-mount device (SMD). The ball grid array (BGA)
is the latest surface-mount package (currently only for large
integrated circuits). It has solder "balls" on the underside in place of
leads. Because they are smaller and have shorter interconnections, SMDs
have better high-frequency characteristics but lower power rating.Transistor packages are made of glass, metal, ceramic, or plastic. The package often dictates the power rating and frequency characteristics. Power transistors have larger packages that can be clamped to heat sinks for enhanced cooling. Additionally, most power transistors have the collector or drain physically connected to the metal enclosure. At the other extreme, some surface-mount microwave transistors are as small as grains of sand.
Often a given transistor type is available in several packages. Transistor packages are mainly standardized, but the assignment of a transistor's functions to the terminals is not: other transistor types can assign other functions to the package's terminals. Even for the same transistor type the terminal assignment can vary (normally indicated by a suffix letter to the part number, q.e. BC212L and BC212K).
Flexible transistors
Researchers have made several kinds of flexible transistors, including organic field-effect transistors.[49][50][51] Flexible transistors are useful in some kinds of flexible displays and other flexible electronics.Friday, 14 February 2014
Data written to a glass “memory crystal” could remain intact for a
million years, according to scientists from the UK and the Netherlands
who have demonstrated the technology for the first time. The
data-storage technique uses a laser to alter the optical properties of
fused quartz at the nanoscale. The researchers say it has the potential
to store a staggering 360 terabytes of data (equivalent to 75,000 DVDs)
on a standard-sized disc.
Longevity and capacity are the key factors to consider in terms of data storage, but existing options are limited. “At the moment, companies have to back up their archives every five to ten years because hard-drive memory has a relatively short lifespan,” explains Jingyu Zhang of the University of Southampton, UK, who led the team that demonstrated the new technique. Optical storage media such as DVDs are more stable, but with standard single-layer discs maxing out at 4.7 GB of data, they are an unwieldy option for vast digital archives.
Scientists have been pursuing the idea of glass as a medium for mass data storage since 1996, when it was first suggested that data could be written optically into transparent materials. By using a femtosecond laser to alter the physical structure of fused quartz, a “dot” with a different refractive index can be created to denote the binary digit one; zeros are indicated by the absence of a dot. Japanese electronics giant Hitachi succeeded in storing data using this method back in 2009, but Zhang’s team has taken the technology a step further, by recording information in 5D – the three dimensions of space that describe the physical location of the dot, and two additional dimensions that are encoded by the polarity and intensity of the beam that creates the dot.
The data file was read using a standard optical microscope in conjunction with a polarizing filter, to measure the way that light transmission was altered by the dots. The read-out showed each dot as a blurred spot of varying intensity, in one of four colours to indicate polarity – a level of optical data encoding that represents a significant improvement over simple 3D systems such as conventional DVDs or even Hitachi’s, according to Zhang. “Consider that when you read a DVD, while you read one spot it’s actually one bit, but in our case, it’s many more bits – 10 bits,” he explains, adding that they “expect 10 times higher reading rates too”.
Xiangping Li, a physicist working on multidimensional optical data storage at Swinburne University of Technology in Hawthorn, Australia, calls the work “quite innovative”, and suggests that the estimated storage capacity would be beefed up even more if the parameters used for the fourth or fifth dimensions were less closely intertwined. “[Currently] these parameters are not orthogonal to each other, so it will create significant crosstalk…it’s a grey scale,” he explains.
Zhang’s group is designing a simple scanning laser read-out device that will enable the reading technology to be brought cheaply into homes in the near future. The same cannot be said for the writing technology, however – there needs to be a significant breakthrough before we could be saving our personal music and photograph collections to memory crystal. National labs, cloud-computing clusters and other large data-generating enterprises, on the other hand, are obvious immediate candidates for early adoption. “Museums that want to preserve information, or places like the National Archives where they have huge numbers of documents, would really benefit,” says Zhang.
The researchers are looking to combine with industry partners to develop a higher-powered laser but, ahead of that, they plan to switch the SLM for another on the market that should increase their writing speed from kilobytes-per-second to megabytes-per-second, and are keeping a keen eye on the current development of an even better version that should offer them speeds of gigabytes-per-second.
The research was presented at the 2013 Conference on Lasers and Electro-Optics, held in San Jose.
Longevity and capacity are the key factors to consider in terms of data storage, but existing options are limited. “At the moment, companies have to back up their archives every five to ten years because hard-drive memory has a relatively short lifespan,” explains Jingyu Zhang of the University of Southampton, UK, who led the team that demonstrated the new technique. Optical storage media such as DVDs are more stable, but with standard single-layer discs maxing out at 4.7 GB of data, they are an unwieldy option for vast digital archives.
Scientists have been pursuing the idea of glass as a medium for mass data storage since 1996, when it was first suggested that data could be written optically into transparent materials. By using a femtosecond laser to alter the physical structure of fused quartz, a “dot” with a different refractive index can be created to denote the binary digit one; zeros are indicated by the absence of a dot. Japanese electronics giant Hitachi succeeded in storing data using this method back in 2009, but Zhang’s team has taken the technology a step further, by recording information in 5D – the three dimensions of space that describe the physical location of the dot, and two additional dimensions that are encoded by the polarity and intensity of the beam that creates the dot.
Superhero memories
To demonstrate the new method, Zhang’s team wrote a 300 kB digital text file into fused quartz glass using a femtosecond laser that produced extremely short and intense pulses of light at a 200 kHz repetition rate. The pulses were sent through a spatial light modulator (SLM), which split the light into 256 separate beams to create a holographic image. A specially designed laser-imprinted half-wave plate matrix was built to control the polarization of the light without the need for moving parts. The laser-imprinted dots were arranged in three planes separated by a distance of five microns, on a sliver of fused quartz, and dubbed “Superman memory crystals” after the once-fanciful technology featured in the Superman films.The data file was read using a standard optical microscope in conjunction with a polarizing filter, to measure the way that light transmission was altered by the dots. The read-out showed each dot as a blurred spot of varying intensity, in one of four colours to indicate polarity – a level of optical data encoding that represents a significant improvement over simple 3D systems such as conventional DVDs or even Hitachi’s, according to Zhang. “Consider that when you read a DVD, while you read one spot it’s actually one bit, but in our case, it’s many more bits – 10 bits,” he explains, adding that they “expect 10 times higher reading rates too”.
Outlasting the human race
The researchers claim that their memory crystals “[open] the era of unlimited lifetime data storage.” As well as providing unprecedented capacity and high-speed reading, fused quartz is exceptionally stable and can withstand temperatures up to 1000 °C. “We think it should potentially last a million years,” enthuses Zhang, meaning the stored data will likely outlast the human race.Xiangping Li, a physicist working on multidimensional optical data storage at Swinburne University of Technology in Hawthorn, Australia, calls the work “quite innovative”, and suggests that the estimated storage capacity would be beefed up even more if the parameters used for the fourth or fifth dimensions were less closely intertwined. “[Currently] these parameters are not orthogonal to each other, so it will create significant crosstalk…it’s a grey scale,” he explains.
Zhang’s group is designing a simple scanning laser read-out device that will enable the reading technology to be brought cheaply into homes in the near future. The same cannot be said for the writing technology, however – there needs to be a significant breakthrough before we could be saving our personal music and photograph collections to memory crystal. National labs, cloud-computing clusters and other large data-generating enterprises, on the other hand, are obvious immediate candidates for early adoption. “Museums that want to preserve information, or places like the National Archives where they have huge numbers of documents, would really benefit,” says Zhang.
The researchers are looking to combine with industry partners to develop a higher-powered laser but, ahead of that, they plan to switch the SLM for another on the market that should increase their writing speed from kilobytes-per-second to megabytes-per-second, and are keeping a keen eye on the current development of an even better version that should offer them speeds of gigabytes-per-second.
The research was presented at the 2013 Conference on Lasers and Electro-Optics, held in San Jose.
Subscribe to:
Posts (Atom)